Fundamental Domains for Shimura Curves

نویسندگان

  • David R. Kohel
  • Helena A. Verrill
چکیده

We describe a process for defining and computing a fundamental domain in the upper half plane H of a Shimura curve X 0 (N) associated to an order in a quaternion algebra A/Q. A fundamental domain for X 0 (N) realizes a finite presentation of the quaternion unit group, modulo units of its center. We give explicit examples of domains for the curves X 0 (1), X 0 (1), and X 35 0 (1). The first example is a classical example of a triangle group and the second is a corrected version of that appearing in the book of Vignéras [13], due to Michon. These examples are also treated in the thesis of Alsina [1]. The final example is new and provides a demonstration of methods to apply when the group action has no elliptic points.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing power series expansions of modular forms

We exhibit a method to numerically compute power series expansions of modular forms on a cocompact Fuchsian group, using the explicit computation a fundamental domain and linear algebra. As applications, we compute Shimura curve parametrizations of elliptic curves over a totally real field, including the image of CM points, and equations for Shimura curves.

متن کامل

Gross–Zagier formula and arithmetic fundamental lemma

The recent work [YZZ] completes a general Gross–Zagier formula for Shimura curves. Meanwhile an arithmetic version of Gan–Gross–Prasad conjecture proposes a vast generalization to higher dimensional Shimura varieties. We will discuss the arithmetic fundamental lemma arising from the author’s approach using relative trace formulae to this conjecture.

متن کامل

Hyperbolic uniformizations through computations on ternary quadratic forms

Orders in indefinite quaternion algebras provide Fuchsian groups acting on the Poincare half-plane, used to construct the associated Shimura curves. We explain how, by using embedding theory, the elements of those Fuchsian groups depend on representations of integers by suitable ternary quadratic forms. Thus the explicit computation of those representations leads to explicit presentations and f...

متن کامل

Equations of Shimura Curves of Genus Two

LetBD be the indefinite quaternion algebra overQ of reduced discriminantD=p1· · · · ·p2r for pairwise different prime numbers pi and let XD/Q be the Shimura curve attached to BD. As it was shown by Shimura [23], XD is the coarse moduli space of abelian surfaces with quaternionic multiplication by BD. Let W = {ωm : m | D} ⊆ Aut Q(XD) be the group of Atkin-Lehner involutions. For any m | D, we wi...

متن کامل

Equations of Hyperelliptic Shimura Curves

We describe an algorithm that computes explicit models of hyperelliptic Shimura curves attached to an indefinite quaternion algebra over Q and Atkin-Lehner quotients of them. It exploits Cerednik-Drinfeld’s nonarchimedean uniformisation of Shimura curves, a formula of Gross and Zagier for the endomorphism ring of Heegner points over Artinian rings and the connection between Ribet’s bimodules an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012